Enhancing Sustainable Crop Production with Machine Learning, Synthetic Data, and Digital Twin for Strawberry

Daeun "Dana" Choi Assistant Professor Smart Agriculture Laboratory Department of Agricultural and Biological Engineering Gulf Coast Research and Education Center

University of Florida

Machine learning and field robotics for precision agriculture

Smart Agriculture Lab

Where Agriculture & Technology Meet to Build Future

Challenges in AP AP News Farm labor shortage nothing new, getting worse, farmers say And the struggles have become that much harder since labor shortages have Agriculture hit other industries as pandemic shutdowns ease. ADVERTISEMENT. Those 2 weeks ago 1. Decrease in agricultural land WKRG Weather, labor shortages and high demand causing food 2. Labor scarcity in rural areas inflation According to the U.S. Department of Agriculture, grain that feeds ... weather 3. Price and availability of energy conditions and labor shortages from the pandemic is the 15 hours ago 4. Climate change 💿 USA Today Finding workers was already hard for the ag industry. Now, Billion dollars it's even worse, farmers say 2021 104.1B 140 And the struggles have become that much harder since labor shortages have 120 hit other industries as pandemic shutdowns ease. 2021 100 eks ago 80 60 40 mo Perspective 20 'o after-effects just beginning | Agriculture ... 0 re has been recovering since third-quarter 2020. ... First, labor a drag on the economic recovery ... Net Farm Income prior to COVID — Net Farm Income without CFAP -Net Farm Income Forecast

Precision Agriculture

Graph from USDA, America's Farmers: Resilient Throughout the COVID Pandemic, Oct 13, 2020

Optimization of Farming Input

- Efficient farming by sitespecific crop management
- Increase crop yields
- · Maximize profit for growers
- · Reduce environmental impact

Technologies for Enhanced Precision Agriculture

- Al and Machine Learning: data analytics and forecasting
- Robotics: Automation with increased efficiency
- Digital Twin: digital representation of your farm

Citrus grove in Lake Wales, Florida

Digital Twin: a dynamic, virtual representation of a physical object system, allowing for real-time "artificial" monitoring or simulation

Shake your land into a thriving farm

Exploring the Virtual Strawberry Farm

Procedural Modeling

- Rules-based approach for modeling rather than manual design of components
- Flexibility: Easier to modify model components instead of recreating the entire model again
- Randomization: Can randomize model

PLANTFACTORY

Results: Fruit Detection on Field Images

Results: Fruit Detection on Field Images

Results: Fruit Detection

Training using Synthetic Data only

	ТР	FP	FN	Precision	Recall	F1-Score
Synthetic Data Gen-1	56	2	86	0.96	0.39	0.56
Synthetic Data Gen-2	127	17	15	0.88	0.89	0.89
Gen-1 + Gen 2	96	3	44	0.97	0.69	0.80
Real Images	129	2	12	0.98	0.91	0.95

Results: Fruit Detection

	Trial 1 (March 16)							
	Fruit Count	Precision	Recall	F1-Score				
All Fruit	295	0.95	0.89	0.92				
Red Fruit	167	0.95	0.99	0.97				
White Fruit	61	1.00	0.87	0.93				
Green Fruit	67	0.94	0.72	0.82				
Trial 2 (March 20)								
All Fruit	134	0.89	0.75	0.81				
Red Fruit	39	0.87	0.95	0.91				
White Fruit	52	0.98	0.81	0.89				
Green Fruit	43	0.83	0.58	0.68				
Green Fruit	40	0.05	0.30	0.00				

Results: Lidar Data In Simulation

Results: Lidar Data Comparison Α Label Description Simulated Lidar Sensor (m) Real Lidar Sensor (m) Ground Truth easurement (m **Bed Spacing** 0.50 0.53 0.51 в Bed Width 0.72 0.71 0.74 С Bed Height 0.26 0.29 0.25

Digital Twin for Runner Cutting

Digital Twin for Runner Cutting

Digital Twin for Runner Cutting

Bidirectional communication between ROS and the hardware, as well as its reflection in the virtual environment of Isaac Sim

Robotics Simulation for Runner Detection

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Acknowledgement

Omeed Mirbod PhD Student

Uchechukwu Ilodibe PhD Student

Namrata Dutt PhD Student

